Redingold said:
I said superconductors, not semiconductors. Superconductors are the ones with no resistance at very low temperatures.
Sorry I completely misread.
Electrons belong to a group of particles called fermions due to the fact they have spin 1/2. All fermions obay pauly exclusion, this is that no 2 electrons in a system can exist in the same quantum state. It is the reason that their are shells instead of all electrons getting as close to the +ve nucleus as possible. Their are 4 quantum numbers when it comes to electrons in an orbit; n(shell number), l(subshell), m(orbit), s(spin). So for n=1 (the innermost shell) you can only have 2 electrons: n=1, l=0, m=0, s=1/2 and n=1, l=0, m=0, s=-1/2. Resistance is caused by electrons scattering off the lattice in a material and causing a rise of temperature in the material.
Now in the case of superconductivity the electrons pair up into cooper's pairs which have spin 0 and so pauly exclusion no longer applies. Due to quantum mechanical effects the cooper pairs require a minimum amount of energy to excite them, if this energy is greater than the thermal energy (kT where k is boltzman's constant and T is temperature) the electron pairs will not be scattered by the lattice, thus having 0 resistance.
This means a current travveling in a superconducting coil does not dissipate. Another, commonly demonstrated property is the levitation of magnets, this is due to in lorentz's law a magnet producing a current in a coil will be repelled by the magnetic field the current in the coil produces. In the case of a superconductor the magnetic repulsion equals the force the magnet produces on the superconductor, so if you approach a superconducting surface with a north pole the surface acts like a north pole and same with the south pole so it always keeps the magnet repelled away from it.
Chamale said:
I have some complicated physics questions that I'm wondering about. I read a book by Einstein about a month ago, and I want to make sure that I understand what I was reading on relativity. So I'll write some of what I think is correct, and please correct me where I'm wrong.
Matter that is relatively stationary to an observer moves through time at the speed of light.
Yes because the co-ordinate for time is ct which is a distance, so by definition of the above without having to add relitivistic corrections in things move through time at c.
If that matter is moving in space relative to the observer, it is travelling more slowly through time, but its vector through spacetime is equal to the speed of light. Right?
Again yes, it's 4 rector will be the same magnitude but it will have been shifted away from the ct axis to provide velocity in space not time.
Furthermore, when matter is annihilated, it releases energy equal to the annihilated mass times the speed of light squared - e=mc^2, famously. Kinetic energy is .5mc^2, so is it accurate to say that matter annihilation releases the kinetic energy of the matter's four-dimensional vector? If this is the case, why isn't Einstein's famous equation e=.5mc^2?
A common mistake, Kinetic energy can nolonger be stated as simply e=.5mv[sup]2[/sup], this only works in classical mechanics. Also E=mc[sup]2[/sup] doesn't tell you the whole thing, this would say photons have zero energy since m=0 but we know this isn't the case. The real expression is E[sup]2[/sup]=sqrt{(mc[sup]2[/sup])[sup]2[/sup]+(pc)[sup]2[/sup]} this reduces to the famous E=mc[sup]2[/sup] when the particle has no momentum.
My next questions are more direct, based on a science-fiction space travel scenario.
Say a spaceship leaves Earth at a speed of 99% light speed, going towards a star 100 light-years away. (Ignore the obvious problems relating to acceleration and safety). To observers on Earth, how much time has passed when the spaceship reaches this star? How much time has passed to the crew? How many years have passed for each group when the ship returns to Earth?
To observers on Earth the ship takes 101 years to get to the star but the crew's clock only advances 14.24 years. When the ship returns (assuming same speed and no turn around deceleration) On Earth 202 years have passes on the crew's clock 28.48 years have passed.
However their is a problem in this, hence its name the "twin paradox";
To the crew the ship takes 101 years to get there and they'd see Earth's clock advance only 14.24 years and same with the return leg. This is a problem with special relativity that is later solved by general relitivity.
If the crew of the spaceship use a device to measure the speed of light, they will find that c=299,792,458 m/s in all directions. Suppose a laser on Earth beams a binary data signal to the spaceship - will the receiver interpret it normally, or will it need to account for time dilation? When would be the last time a laser on Earth could send data to the crew that they'd receive before reaching the star - 1 year after departure? 99 years after?
I hope these questions make sense. I think the answers will be interesting, so I hope they're not really tedious to type out.
They would have to adjust the information stream as if the people on earth sent 1bit/sup the pulse, the crew would get it at .14bit/s, this is due to not only time dilation but the fact that when a bit arrives the ship has moved away a non-trivial amount before the next one arrives stretching out the bit duration and rate. The last possible send time would be after 1 year (Earth time) since the data would take 100 years to get to the star but it only takes the crew 101 to get there by Earth's clocks.
creationis apostate said:
GiglameshSoulEater said:
Which idea of universe 'creation' i.e how it started, do you favor?
And isn't the big bang theory just on how it expanded 'n stuff after creation, not creation itself?
...
I haven't done advanced physics.
Christian are you?
Well, basically we don't know what caused it.
Nah, I was actually calling theists quite silly for just pulling this out at every blank. And yeah we don't know, yet.
henritje said:
how often do people make Gordon Freeman/Half-Life jokes?
Not heard one yet.