You're hilariously delusional.
A summary of the study....
"Compared with 384 uninfected control subjects, those who tested positive for Covid had greater overall brain shrinkage and more grey matter shrinkage, particularly in areas linked to smell. For example, those who had Covid lost an additional 1.8% of the parahippocampal gyrus, a key region for smell, and an additional 0.8% of the cerebellum, compared with control subjects."
The citations used in the article you dismiss.
"There is strong evidence of brain-related abnormalities in COVID-19"
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13.
- Paterson, R. W. et al. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain 143, 3104–3120 (2020).
Article PubMed PubMed Central Google Scholar
- de Erausquin, G. A. et al. The chronic neuropsychiatric sequelae of COVID-19: the need for a prospective study of viral impact on brain functioning. Alzheimers Dement. 17, 1056–1065 (2021).
Article PubMed CAS Google Scholar
- Yang, A. C. et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 595, 565–571 (2021).
Article ADS CAS PubMed PubMed Central Google Scholar
- Deleidi, M. & Isacson, O. Viral and inflammatory triggers of neurodegenerative diseases. Sci. Transl. Med. 4, 121ps123 (2012).
Article CAS Google Scholar
- Butowt, R., Meunier, N., Bryche, B. & von Bartheld, C. S. The olfactory nerve is not a likely route to brain infection in COVID-19: a critical review of data from humans and animal models. Acta Neuropathol. 141, 809–822 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Taquet, M., Geddes, J. R., Husain, M., Luciano, S. & Harrison, P. J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry 8, 416–427 (2021).
Article PubMed PubMed Central Google Scholar
- Taquet, M., Luciano, S., Geddes, J. R. & Harrison, P. J. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry 8, 130–140 (2021).
Article PubMed Google Scholar
- Helms, J. et al. Neurologic features in severe SARS-CoV-2 infection. N. Engl. J. Med. 382, 2268–2270 (2020).
Article PubMed Google Scholar
- Manca, R., De Marco, M., Ince, P. G. & Venneri, A. Heterogeneity in regional damage detected by neuroimaging and neuropathological studies in older adults with COVID-19: a cognitive-neuroscience systematic review to inform the long-term impact of the virus on neurocognitive trajectories. Front. Aging Neurosci. 13, 646908 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Mukerji, S. S. & Solomon, I. H. What can we learn from brain autopsies in COVID-19? Neurosci. Lett. 742, 135528 (2021).
Article CAS PubMed Google Scholar
- Meinhardt, J. et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 24, 168–175 (2021).
Article CAS PubMed Google Scholar
- Puelles, V. G. et al. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med. 383, 590–592 (2020).
Article PubMed Google Scholar
- Matschke, J. et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 19, 919–929 (2020).Return to ref 13 in article
Article CAS PubMed PubMed Central Google Scholar
- Chertow, D. et al. SARS-CoV-2 infection and persistence throughout the human body and brain. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-1139035/v1 (2021).
- Philippens, I. H. C. H. M. et al. SARS-CoV-2 causes brain inflammation and induces Lewy body formation in macaques. Preprint at bioRxiv https://doi.org/10.1101/2021.02.23.432474 (2021).
- Lechien, J. R. et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur. Arch. Otorhinolaryngol. 277, 2251–2261 (2020).
Article PubMed PubMed Central Google Scholar
- Cooper, K. W. et al. COVID-19 and the chemical senses: supporting players take center stage. Neuron 107, 219–233 (2020).
Article CAS PubMed PubMed Central Google Scholar
- Hosp, J. A. et al. Cognitive impairment and altered cerebral glucose metabolism in the subacute stage of COVID-19. Brain 144, 1263–1276 (2021).
Article PubMed Google Scholar
- Postma, E. M., Smeets, P. A. M., Boek, W. M. & Boesveldt, S. Investigating morphological changes in the brain in relation to etiology and duration of olfactory dysfunction with voxel-based morphometry. Sci. Rep. 11, 12704 (2021).
Article CAS PubMed PubMed Central Google Scholar
- Butowt, R. & Bilinska, K. SARS-CoV-2: olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem. Neurosci. 11, 1200–1203 (2020).
Article CAS PubMed Google Scholar
- Netland, J., Meyerholz, D. K., Moore, S., Cassell, M. & Perlman, S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J. Virol. 82, 7264–7275 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Brann, D. H. et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 6, eabc5801 (2020).
Article ADS CAS PubMed Google Scholar
Where's your equivalent in flat earth evidence?